Eremophilane Glucosides from *Petasites japonicus*

by Guangyin Wang^a), Junzeng Zhang^b), Marianna Kulka^c), Fujiang Guo*^a), and Yiming Li*^a)

^a) School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China (phone: +86-21-51322191; fax: +86-21-51322193; e-mail: gfj@shutcm.edu.cn; ymlius@163.com)
^b) Aquatic and Crop Resource Development, National Research Council of Canada, Halifax, NS, B3 H 3Z1, Canada

^c) National Institute of Nanotechnology, National Research Council Canada, Edmonton, AB, T6G2M9, Canada

Three new eremophilane glucosides, namely, petasitosides A-C, and seven known eremophilanetype sesquiterpenoids were isolated from the roots of *Petasites japonicus*. Their structures were elucidated by spectroscopic techniques including 1D- and 2D-NMR spectroscopy and mass spectrometry. This is the first report on eremophilane glycosides from the genus Petasites.

Introduction. – *Petasites japonicus* (SIEBOLD & ZUCC.) MAXIM., also known as *Butterbur*, is a herbaceous perennial plant in the family of Asteraceae. In China, the whole plant has been used as a traditional Chinese medicine against tonsillitis, carbuncle swollen boils, and poisonous snake bite [1]. It is also cultivated in Japan and South Korea, where it is consumed as a common vegetable. The flower bud is baked and used in traditional medicine as an expectorant or in the treatment of asthma in Japan [2]. Sesquiterpenoids, especially eremophilanes [3-6], have been previously reported as the main constituents of this plant. Pharmacological studies have suggested that *P. japonicus* extracts possess a variety of biological features such as neuroprotective [7-9], anti-allergic [2][10], antimutagenic, and cytotoxic [11-13] activities.

In an *in vivo* model of active systemic anaphylaxis (ASA), our preliminary pharmacological experiments had revealed that the CHCl₃-soluble fraction of the 95% EtOH extract taken from the rhizomes blocked type-I and type-IV allergic inflammation [14]. Further chemical investigation of this plant resulted in the isolation of three new eremophilane sesquiterpenoid glucosides, 1-3, along with seven known sesquiterpenoids, 4-10 (*Fig. 1*).

Results and Discussion. – The CH_2Cl_2 -soluble fraction from the 95% EtOH extract of the roots of *P. japonicus* was subjected to column chromatography on silica gel (200–300 mesh), eluting with a gradient of petroleum ether/AcOEt. Further purification by column chromatography using silica gel, *Sephadex LH-20*, and *ODS* yielded **4–8**. The BuOH-soluble fraction from the 95% EtOH extract of the roots of *P. japonicus*, was subjected to column chromatography on silica gel (200–300 mesh) with a gradient of CH₂Cl₂/MeOH 20:1 to MeOH to afford 16 fractions. After further purification on *ODS*, **1–3**, **9**, and **10** were obtained. Among the isolated compounds, the known compounds **4–10**, which have previously been reported from this genus, were identified as

© 2014 Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Chemical structures of 1-10

 6β -(angeloyloxy)- 3β , 8α -dihydroxyeremophil-7(11)-en-12, 8β -olide (**4**) [4], 6β -(angeloyloxy)- 3β , 8β -dihydroxyeremophil-7(11)-en-12, 8α -olide (**5**) [4], 3β -(angeloyloxy)eremophilenolide (**6**) [15], 6β -(angeloyloxy)-8-hydroxyeremophilenolide (**7**) [16], 6β -(angeloyloxy)- 8β -hydroxy-3-oxoeremophil-7(11)-en-12, 8α -olide (**8**) [1], 3β , 6β -dihydroxyeremophilenolide (**9**) [17], and 3β -hydroxy-8-oxoeremophil-6-en-12-oic acid methyl ester (**10**) [18].

The structures of the new compounds were elucidated by using various spectroscopic methods. Compound 1 was obtained as white amorphous powder with the molecular formula of $C_{21}H_{34}O_8$ deduced from the HR-ESI mass spectrum (m/z 437.2164 $([M + Na]^+))$, indicating five degrees of unsaturation. The IR spectrum indicated the presence of OH (3379 cm⁻¹), and C=O (1716 cm⁻¹) groups. In the ¹³C-NMR spectrum (*Table*), the signals at δ (C) 102.4, 76.9, 76.2, 73.4, 69.9, and 61.3 indicated the presence of one glucosyl moiety. The glucosyl H-atom signals were detected at $\delta(H)$ 4.32 (d, J = 7.6, 1 H), 3.84 (dd, J = 11.9, 2.0, 1 H), 3.66 (dd, J = 11.9, 5.8, 1 H), and 3.19-3.32 (overlapped, 4 H) in its ¹H-NMR spectrum (*Table*). Acid hydrolysis and GC analysis of 1 confirmed the presence of D-glucose. The ¹³C-NMR and DEPT-135 data indicated that the aglycon of 1 contained 15 C-atoms including those of three Me, four CH₂, five CH groups, and three quaternary C-atoms. One C=O signal at $\delta(C)$ 210.0, two Obearing C-atom signals at $\delta(C)$ 65.5 (CH) and 81.3 (CH), and the signals at $\delta(C)$ 144.9 (C) and 112.5 (CH₂), ascribed to the C(11)=C(12) bond, were observed. In the ¹H-NMR spectrum, there were three Me signals at high field (δ (H) 1.85 (s), 1.09 (s), and 0.82 (d, J = 6.7). Among them, the signal at $\delta(H)$ 1.85 suggested that the corresponding Me group was attached to an olefinic C-atom. These observations and the HMBC analysis (Fig. 2) suggested that **1** had a typical eremophilane skeleton. In the HMBC spectrum, long-range correlations were observed between H-C(1), H-C(8), H-C(10), and C(9); H-C(1), H-C(3), and C(2); H-C(12), and C(11),

987

Position	1		2		3	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
1	1.44 - 1.51 (m),	29.6	1.38 - 1.46 (m),	26.4	1.51 - 1.62 (m),	26.6
	2.21 - 2.26 (m)		1.58 - 1.63 (m)		1.63 - 1.67 (m)	
2	3.95 - 4.04(m)	65.5	1.53 - 1.60 (m)	26.9	1.56 - 1.61 (m)	26.9
3	1.29 - 1.38 (m),	38.5	3.64 - 3.71(m)	69.9	3.73 - 3.78(m)	69.9
	1.68 - 1.71 (m)					
4	1.48 - 1.54 (m)	31.6	1.85 - 1.91 (m)	44.6	1.87 - 1.95 (m)	44.6
5	-	39.8	-	39.8	-	40.2
6	1.82 - 1.84 (m)	39.6	6.61(s)	155.6	6.78(s)	158.8
7	2.56 (dt, J = 11.9, 4.3)	47.1	-	138.2	-	136.3
8	4.56 (d, J = 11.9)	81.3	-	199.8	-	199.5
9	-	210.0	2.20 (dd, J = 17.3, 2.1),	40.4	2.27 (dd, J = 17.1, 2.2),	40.7
			2.74 (dd, J = 17.3, 4.5)		2.77 (dd, J = 17.3, 4.3)	
10	2.67 (d, J = 3.2)	55.3	2.03 - 2.09 (m)	35.3	2.06 - 2.10 (m)	35.5
11	-	144.9	2.94 - 3.03 (m)	32.7	-	142.8
12	4.90 (br. s),	112.5	3.41 (dd, J = 7.0, 9.4),	72.9	4.34 (d, J = 12.6),	70.4
	4.94 (br. s)		3.92 (dd, J = 6.5, 9.4)		4.54 (d, J = 12.6)	
13	1.85(s)	18.4	1.11 (d, J = 7.0)	15.7	5.21 (d, J = 1.5),	115.8
					5.34 (d, J = 1.5)	
14	0.82 (d, J = 6.7)	20.2	1.00 (d, J = 7.0)	6.3	1.00 (d, J = 7.0)	6.3
15	1.09 (s)	14.3	1.24 (s)	24.4	1.29 (s)	24.1
Glc						
1′	4.32 (d, J = 7.6)	102.4	4.24 (d, J = 7.8)	103.1	4.27 (d, J = 7.8)	101.6
2′	3.24 (overlapped)	73.4	3.16 (dd, J = 9.1, 7.8)	73.8	3.17 (dd, J = 9.1, 7.8)	73.7
3′	3.32 (overlapped)	76.2	3.26 (overlapped)	76.5	3.24 (overlapped)	76.5
4′	3.30 (overlapped)	69.9	3.25 (overlapped)	70.4	3.24 (overlapped)	70.4
5'	3.19 (overlapped)	76.9	3.34 (overlapped)	76.7	3.34 (overlapped)	76.9
6′	3.66 (dd, J = 11.9, 5.8),	61.3	3.67 (dd, J = 11.9, 5.5),	61.6	3.64 (dd, J = 11.9, 5.4),	61.6
	3.84 (dd, J = 11.9, 2.0)		3.88 (dd, J = 11.9, 1.6)		3.87 (dd, J = 11.9, 1.4)	

Table. ¹H- and ¹³C-NMR (400 and 100 MHz, resp., CD₃OD) Data of 1-3. δ in ppm, J in Hz.

C(13), and C(7). These data confirmed the presence of the C(11)=C(12) bond and the C(9)=O group, and the two OH groups were at C(2) and C(8). The position of the sugar residue was also determined from the HMBC experiment, in which there were cross-peaks between the anomeric H-atom signals at δ (H) 4.32 (H–C(1')) and δ (C)

81.3 (C(8)). The β -anomeric configuration of the D-glucose unit was determined based on its coupling constant (J = 7.6). All ¹H- and ¹³C-NMR signals (*Table*) were assigned on the basis of the HMBC, HSQC, and ¹H,¹H-COSY correlations. The relative configuration of **1** was determined by the NOESY correlations shown in *Fig. 3*. The NOE cross-peak H–C(10)/Me(15) suggested a *cis*-junction of the A/B rings. The NOE correlations between H_a–C(2) and H_a–C(4), and H_β–C(8) and H_β–C(10) implied that the OH groups at C(2) and C(8) were β - and α -oriented, respectively [19]. The configuration at C(7) was deduced from the coupling constant of 11.9 Hz between H–C(7) and H–C(8), indicating their *trans* diaxial orientation [20]. The structure of **1** was thus elucidated as (2β , 8α)-2-hydroxy-9-oxoeremophil-11-en-8-yl β -D-glucopyranoside and named petasitoside A.

Compound 2, obtained as white amorphous powder, was assigned the molecular formula $C_{21}H_{34}O_8$ according to its HR-ESI-MS $(m/z \ 437.2150 \ ([M+Na]^+))$. The IR spectrum indicated that an OH (3386 cm^{-1}) and a C=C group (1658 cm^{-1}) were present. There was a glucosyl moiety as revealed by ¹H- and ¹³C-NMR (*Table*) and acid hydrolysis. In the ¹H-NMR spectrum, signals of three tertiary Me groups were observed $\delta(H)$ 1.24, 1.11, and 1.00). The ¹H-NMR spectrum also revealed the presence of one CH–O (δ (H) 3.64–3.71) and one CH₂O group (δ (H) 3.41 and 3.92). The aglycon structure of **2** was determined as 3,12-dihydroxy-8-oxoeremophil-6-ene according to HMBC analysis (*Fig.* 2). The ¹H- and ¹³C-NMR spectra of the aglycone moiety were similar to those of 3β -hydroxy-8-oxoeremophil-6-en-12-oic acid methyl ester [18], except that the C(12)OOH group was reduced to a primary alcohol in the former. The HMBC between the signals at $\delta(H)$ 4.24 (H–C(1')) and $\delta(C)$ 72.9 (C(12)) revealed that the glucosyl moiety was at C(12). All H- and C-atom signals (Table) were assigned based on HMBC, HSQC, and ¹H,¹H-COSY correlations. The relative configuration of 2 was determined by the NOESY correlations shown in Fig. 3. In the NOESY spectrum, the correlations H_{β} -C(10)/Me(15), H-C(6)/H_a-C(3), and H-C(6)/ H_{a} -C(4) suggested that the Me(15) group was *cis* to H-C(10), and the OH group at C(3) was β -oriented [18][20]. Thus, the structure of **2** was elucidated as 3β -hydroxy-8oxoeremophil-6-en-12-yl β -D-glucopyranoside and named petasitoside B.

Compound **3** was white amorphous powder with a molecular formula $C_{21}H_{32}O_8$ based on the HR-ESI-MS (m/z 435.1996 ($[M + Na]^+$)), indicating six degrees of unsaturation. The IR spectrum indicated that OH (3386 cm⁻¹) groups and a C=C bond (1662 cm⁻¹) were present. There was a glucosyl moiety revealed by ¹H- and ¹³C-NMR (*Table*) and acid hydrolysis. The ¹H- and ¹³C-NMR spectra of **3** were similar to those of **2**, except that the Me(13) group was replaced by a CH₂(13)= group (δ (C) 115.8). All ¹H- and ¹³C-NMR signals (*Table*) were assigned on the basis of

Fig. 3. Key NOE correlations of 1-3

HMBC, HSQC, and ¹H,¹H-COSY correlations. The relative configuration of **3** was determined by the NOESY correlations shown in *Fig. 3*. Therefore, **3** was deduced as 3β -hydroxy-8-oxoeremophila-6,11(13)-dien-12-yl β -D-glucopyranoside, named as petasitoside C.

Eremophilane-type sesquiterpenes belong to the bicyclic sesquiterpene group, whose basic skeletal structure contains two six-membered rings and four Me groups. These compounds often occur in oxygenated forms such as eremophilane alcohols, eremophilane acids, eremophilane lactones, furanoeremophilanes, or rare eremophilane glycosides [21][22] in nature. Some special structures such as noreremophilanes [3], secoeremophilanes [22], and eremophilane dimers [23] also have been found. Many of them possess biological or therapeutic properties including antitumor, antibacterial, and anti-inflammatory activities. Although a series of eremophilane sesquiterpenes were isolated previously, this is the first report of eremophilane glycosides from this genus.

This work was supported by the *National Natural Science Foundation of China* (the Canada–China Joint Health Research Initiatives Grant 81261120567), the '*Xing-lin' Scholar Program* of *SHUTCM*, and the *Eastern Scholar Program* (2012-90).

Experimental Part

General. TLC: $HSGF_{254}$ silica gel plates (SiO₂; 10–40 µm; Yantai Jiangyou, P. R. China). Column chromatography (CC): SiO₂ (100–200, 200–300, or 300–400 mesh; Qingdao Haiyang Chemical Company, P. R. China), Sephadex LH-20 (GE Healthcare Bio-Sciences AB, Sweden), and ODS-A-HG (S-50 µm; YMC Co., Ltd., Japan). GC: Thermo TRACE DSQ apparatus equipped with a TR-5 column (length, 60 m × 0.25 mm, thickness of liquid phase, 0.25 nm). Optical rotations: PerkinElmer 341 polarimeter. UV Spectra: Agilent 8453 spectrometer (Agilent, Santa Clara, USA); λ_{max} in nm. IR Spectra: Nicolet-Magna-750-FT-IR spectrometer (ThermoFisher, Madison, USA); KBr pellets; $\tilde{\nu}$ in cm⁻¹. ¹H-, ¹³C- and 2D-NMR spectra: Bruker AV-400 instrument (¹H: 400 and ¹³C: 100 MHz); δ in ppm rel. to Me₄Si as internal standard, J in Hz. ESI- and HR-ESI-MS: Finnigan LCQ Deca XP equipped with an electrospray ionization source mass ion-trap spectrometer and Waters Micromass Q-TOF ultima Globe spectrometer, resp.; in m/z.

Plant Materials. Roots of *P. japonicus* were collected in March 2011 from Bozhou area, Anhui Province, P. R. China, and identified by Prof. *Xiujia Zhou* at Shanghai University of Traditional Chinese Medicine. A voucher sample (20110301) was deposited with the School of Pharmacy, Shanghai University of Traditional Chinese Medicine, P. R. China.

Extraction and Isolation. Dried and milled roots of *P. japonicus* (20.0 kg) were extracted three times (2 h each) under reflux in 95% EtOH (20 l each). The solvent was evaporated under reduced pressure to yield a crude extract (2.4 kg), which was suspended in H_2O (5 l), and then partitioned with petroleum ether (PE; 15 l), CH₂Cl₂ (15 l), and BuOH (15 l), to afford 325 g of CH₂Cl₂-soluble fraction and 100 g of BuOH-soluble fraction.

The CH₂Cl₂-soluble fraction was then subjected to CC (SiO₂ (200–300 mesh); PE/AcOEt 19:1 to 1:1) to give seven fractions, *Frs. 1 – 7.* Compounds **4** and **5** (15 g) were crystallized as a mixture in CH₂Cl₂/MeOH from *Fr. 5. Fr. 3* was subjected repeatedly to CC (SiO₂ (300–400 mesh); PE/AcOEt 10:1 to 1:1), followed by CC (*Sephadex LH-20* (MeOH) and *ODS* (80% MeOH)) to furnish **6** (15 mg), **7** (10 mg), and **8** (12 mg).

The BuOH-soluble fraction was subjected to CC (SiO₂ (200–300 mesh); CH₂Cl₂/MeOH 20:1 to MeOH) to afford 16 fractions, *Frs. 1–16. Fr. 4* was decolorized by CC (*MCI* gel (*CHP20P*, *Mitsubishi Chemical Corp.*, Japan). The fraction eluted from 40% MeOH was subjected to CC repeatedly (*Sephadex LH-20* (MeOH) and *ODS* (55% MeOH)) to afford **9** (11 mg). *Fr.* 9 also was subjected to CC

on *MCI* for decolorization, and its 20, 40, and 60% MeOH eluting fractions were further purified by a combination of CC (SiO₂ (CH₂Cl₂/MeOH 15:1 to 6:1), *Sephadex LH-20* (MeOH), and *ODS* (40% MeOH)) to yield **10** (27 mg), **1** (29 mg), **2** (5 mg), and **3** (4 mg).

Determination of Sugar Components. Compounds (0.5 mg each) were refluxed in 10% HCl/dioxane 1:1 (2 ml) for 2 h, and the solvent was evaporated under N₂. The residue was dissolved in pyridine (100 μ l), 0.1ML-cysteine methyl ester hydrochloride (200 μ l) was added, and the mixture was warmed and kept at 60° for 1 h. The trimethylsilylation reagent HMDS-TMCS (hexamethyldisilazane/Me₃SiCl/pyridine 2:1:10) was added, and the mixture was kept at 60° for another 30 min. The thiazolidine derivatives were subjected to GC analysis. D-Glucose (t_R 41.31 min) was identified by comparison with an authentic sample.

Petasitoside $A = (2\beta_1\beta_8\alpha)-2$ -Hydroxy-9-oxoeremophil-11-en-8-yl β -D-Glucopyranoside = (2R,3R, 4aR,5S,7R,8aS)-Decahydro-7-hydroxy-4a,5-dimethyl-3-(1-methylethenyl)-1-oxonaphthalen-2-yl β -D-Glucopyranoside; **1**). Amorphous powder. $[\alpha]_D^{25} = +32.3 \ (c = 0.10, \text{ MeOH})$. UV (MeOH): 212, 242. IR (KBr): 3379, 1716, 1643, 1078, 1030. ¹H- and ¹³C-NMR: see the Table. ESI-MS (pos.): 415 ($[M + \text{H}]^+$), 437 ($[M + \text{Na}]^+$). HR-ESI-MS: 437.2164 ($[M + \text{Na}]^+$, C₂₁H₃₄NaO₈; calc. 437.2151).

Petasitoside B (=3 β -Hydroxy-8-oxoeremophil-6-en-12-yl β -D-Glucopyranoside = 2-[(4aR,7S,8R, 8aR)-3,4,4a,5,6,7,8,8a-Octahydro-7-hydroxy-8,8a-dimethyl-3-oxonaphthalen-2-yl]propyl β -D-Glucopyranoside; **2**). Amorphous powder. [a]₂₅^D = -55.0 (c = 0.10, MeOH). UV (MeOH): 209, 239. IR (KBr): 3386, 1658, 1078, 1032. ¹H- and ¹³C-NMR: see the *Table*. ESI-MS: 415 ([M+H]⁺). HR-ESI-MS: 437.2150 ([M+Na]⁺, C₂₁H₃₄NaO⁺₈; calc. 437.2151).

Petasitoside C (= 3β-Hydroxy-8-oxoeremophila-6,11(13)-dien-12-yl β-D-Glucopyranoside = 2-[(4aR,7S,8R,8aR)-3,4,4a,5,6,7,8,8a-Octahydro-7-hydroxy-8,8a-dimethyl-3-oxonaphthalen-2-yl]prop-2en-1-yl β-D-Glucopyranoside; **3**). Amorphous powder. [a]²⁵_D = -70.7 (c = 0.09, MeOH). UV (MeOH): 211, 239. IR (film): 3386, 1662, 1080, 1034. ¹H- and ¹³C-NMR: see the *Table*. ESI-MS (pos.): 413 ([M + H]⁺), 435 ([M + Na]⁺). HR-ESI-MS: 435.1996 ([M + Na]⁺, C₂₁H₃₂NaO^{*}₈; calc. 435.1995).

REFERENCES

- [1] Y. Yaoita, M. Kikuchi, Chem. Pharm. Bull. 1994, 42, 1944.
- [2] H. Shimoda, J. Tanaka, E. Yamada, T. Morikawa, N. Kasajima, M. Yoshikawa, J. Agric. Food Chem. 2006, 54, 2915.
- [3] Y. Goto, Y. Kojima, T. Nakayama, M. Terazawa, Phytochemistry 2001, 57, 109.
- [4] Y. Yaoita, K. Nagata, N. Suzuki, M. Kikuchi, Chem. Pharm. Bull. 1992, 40, 3277.
- [5] M. Tori, M. Kawahara, M. Sono, Tetrahedron Lett. 1997, 38, 1965.
- [6] M. Tori, M. Kawahara, M. Sono, Phytochemistry 1998, 47, 401.
- [7] D.-E. Sok, S. H. Oh, Y.-B. Kim, H.-G. Kang, M. R. Kim, Eur. J. Nutr. 2006, 45, 61.
- [8] S. H. Oh, D. E. Sok, M. R. Kim, J. Med. Food. 2005, 8, 169.
- [9] H. S. Cui, M. R. Kim, D. E. Sok, J. Agric. Food Chem. 2005, 53, 8526.
- [10] S. Tobinaga, N. Takeuchi, T. Kasama, J. Yamashita, Y. Aida, Y. Kaneko, *Chem. Pharm. Bull.* 1983, 31, 745.
- [11] H.-G. Kang, S.-H. Jeong, J.-H. Cho, J. Vet. Sci. 2010, 11, 51.
- [12] H. Y. Cho, J. U. Koh, Y. B. Kwon, K. H. Kong, IFMBE Proc. 2007, 15, 476.
- [13] B.-G. Heo, Y.-S. Park, S.-U. Chon, S.-Y. Lee, J.-Y. Cho, S. Gorinstein, BioFactors 2007, 30, 79.
- [14] Q.-Q. Zheng, P.-J. Kong, X.-M. Wu, H.-L. Li, Y.-M. Li, Acta Universitatis Traditionis Medicalis Sinensis Pharmacologiaeque Shanghai 2011, 4, 79.
- [15] T. Kurihara, S. Suzuki, Yakugaku Zasshi 1977, 97, 863.
- [16] B. Fu, Q. X. Zhu, X. P. Yang, Z. J. Jia, Pharmazie 1999, 54, 620.
- [17] K. Sugama, K. Hayashi, H. Mitsuhashi, Phytochemistry 1985, 24, 1531.
- [18] Y. Yaoita, M. Kikuchi, Chem. Pharm. Bull. 1995, 43, 1738.
- [19] T. Yamada, K. Minoura, R. Tanaka, J. Antibiot. 2007, 60, 370.
- [20] B. Wu, L. Gan, H. Qu, J. Nat. Prod. 2010, 73, 1069.
- [21] A. Mimura, H. Sumioka, K. Matsunami, H. Otsuka, J. Nat. Med. 2010, 64, 153.

- [22] A. Arciniegas, K. González, A.-L. Pérez-Castorena, J. Maldonado, J. L. Villaseñor, A. R. de Vivar, J. Nat. Prod. 2011, 74, 1584.
- [23] M. Tori, K. Otose, H. Fukuyama, J. Murata, Y. Shiotani, S. Takaoka, K. Nakashima, M. Sono, M. Tanaka, *Tetrahedron* 2010, 66, 5235.

Received October 10, 2013